
TI ARM Lab 7
Accelerometers

National
Science
Foundation

Funded in part, by a grant from the
 National Science Foundation
DUE 1068182

Acknowledgements
Developed by Craig Kief, Brian Zufelt, and Jacy Bitsoie at the Configurable Space Microsystems
Innovations & Applications Center (COSMIAC). Co-Developers are Bassam Matar from Chandler-Gilbert
and Karl Henry from Drake State. Funded by the National Science Foundation (NSF).

Lab Summary
This lab introduces the concepts of the I2C and how it is implemented on the ARM processor.

Lab Goal
The goal of this lab is to continue to build upon the skills learned from previous labs. This lab helps the
student to continue to gain new skills and insight on the C code syntax and how it is used in the TI
implementation of the ARM processor. Each of these labs will add upon the previous labs and it is the
intention of the authors that students will build with each lab a better understanding of the ARM processor
and basic C code, syntax and hardware. Even though these tutorials assume the student has not entered with
a knowledge of C code, it is the desire that by the time the student completes the entire series of tutorials
that they will have a sufficient knowledge of C code so as to be able to accomplish useful projects on the
ARM processor.

Learning Objectives
The student should begin to become familiar with the concept of the accelerometer and ways to accomplish
simple projects. An accelerometer is a device that will measure acceleration forces. These forces may be
static, like the constant force of gravity pulling at your feet, or they could be dynamic - caused by moving or
vibrating the accelerometer. By measuring the amount of static acceleration due to gravity, you can find out
the angle the device is tilted at with respect to the earth. By sensing the amount of dynamic acceleration,
you can analyze the way the device is moving. An accelerometer can help the designer understand the
system better. Is it driving uphill? Is it going to fall over when it takes another step? Is it flying horizontally
or is it dive bombing your professor? A designer can write code to answer all of these questions using the
data provided by an accelerometer. In the computing world, IBM and Apple have recently started using
accelerometers in their laptops to protect hard drives from damage. If you accidentally drop the laptop, the
accelerometer detects the sudden free-fall, and switches the hard drive off so the heads don't crash on the
platters. In a similar fashion, high g accelerometers are the industry standard way of detecting car crashes
and deploying airbags at just the right time.

The ADXL345 is a small, thin, ultralow power, 3-axis accelerometer with high resolution (13-bit)
measurement at up to ±16 g. Digital output data is formatted as 16-bit twos complement and is accessible
through either a SPI (3- or 4-wire) or I2C digital interface. The ADXL345 is well suited for mobile device
applications. It measures the static acceleration of gravity in tilt-sensing applications, as well as dynamic
acceleration resulting from motion or shock. Its high resolution (3.9 mg/LSB) enables measurement of
inclination changes less than 1.0°.

Grading Criteria
N/A

2

Time Required
Approximately one hour

Lab Preparation
It is highly recommended that the student read through this entire procedure once before actually using it as
a tutorial. It is also recommended that the tutorial software was run first to preload compiler options and
source files.

Equipment and Materials
It is assumed that the student has already completed prior labs and the software is installed properly.

Software needed Quantity
Install the tutorial software from the autoinstaller located at
http://www.cosmiac.org/Microcontrollers.html

1

Hardware needed Quantity
The hardware required is the TI Stellaris LaunchPad Kit and the Digilent
Orbit board

1

Additional References
Current TI ARM manuals found on TI web site: www.ti.com/lit/ug/spmu289a/spmu289a.pdf.

3

Lab Procedure: Install/Connect board to computer
Plug in the supplied USB cable to the top of the Evaluation Kit and Digilent Orbit board as shown in Figure
1. Ensure the switch on the board is set to “DEBUG” and not “DEVICE”. It is assumed that the evaluation
board is properly installed and operating. Launch the Code Composer software. The easiest way to find it,
is to go to Start, All programs and then look in the area identified in Figure 2.

Figure 1.Stellaris and Orbit Combination

Figure 2.Code Composer

Figure 3.Workspace Launcher

4

The designer will be presented with the choices shown in Figure 3. The Code Composer wants to know
where the workspace is located. If the auto installer was used to set up the lab files, it will automatically
load up shells that were used for the workshop and these tutorials. In that case, use the path as shown in the
picture in Figure 3. The student will know if they have used the auto installer program as they will be
presented with a picture as shown in Figure 4 where the shells of all lab projects are installed. What is
desired is to have the student step through the Lab_7 exercise. First however, read through this procedure
so the student knows more about where they are going. Each tutorial/lab presents new information related
to C code and to its use in programming the ARM processor.

Figure 4. Shell of Projects

It is now important to spend a couple of minutes to explain a little more about the accelerometer used in this
project. If you are looking on the Orbit board, there is a small chip in the upper right quadrant. It has a cross
on it with a “X” and “Z” lettering. This is the ADXL345 chip.

Figure 5. ADXL345

As can be seen in Figure 5, it has a 3-axis sensor that can be used to detect the orientation of the board. In
this tutorial, only the X axis will be measured. This is to keep the tutorial as simple as possible. As a result,
the function will have three returned values: -1 (going left), 0 (standing still), or 1 (going right). The chip is

5

very sensitive. The system transfers data on an I2C line. The ADXL345 has a I2C output and the ARM
processor has I2C inputs as shown in Figure 6 from the datasheet.

Figure 6. Connection Diagram

This protocol interface has a unique set of waveforms to allow the system to know when to start and stop the
transfer of data. This waveform is shown in Figure 7 and is how the processor knows when to receive data.

Figure 7. I2C Waveform Timing Diagram

The entire code for this project is given at the end of this tutorial in attachment 1. This initially looks like a
large amount of very complex code however, when you remember that much of the LED portion has been
presented in previous labs it is less scary. Add to that the fact that another large portion of the code is
nothing more than delays to slow the system down for human consumption and it is less scary. Some of the
first code seen is shown below:

#define ACCEL_W 0x3A
#define ACCEL_R 0x3B
#define ACCEL_ADDR 0x1D

These three lines above are the definition parameters for the device. They are taken from the ADXL345
datasheet as shown below. It clearly defines the address as x1D, the read as x3B and the write as x3A.

Figure 8. Datasheet Excerpt

6

The next set of code shown below is a new topic. It is called a “function prototype.” Most experienced
designers like to have the main starting portion of their code appear at the top of the main.c file. The
beginning of the program is normally identified with “void main(void) {”. To make things cleaner, most
designers will use the function prototypes to declare the functions at the top of the file and then further
down in the program after the main function, will do the full explanation and declaration of what the
functions actually do. In this case, there are two function prototypes. The first is to initialize the
accelerometer and the second is to read the chip.

The next portion of the code initializes the LEDs. This is very similar to what has been done in previous
labs. All peripherals must be initialized before they can be used. The way this code is designed to operate
is to have the LEDs fall or flow downhill based on the way the board is tilted. If the board is tilted 90
degrees to the left, the LEDs will fall down to the bottom. If the board is tilted the other direction, the LEDs
will still attempt to fall to the bottom. After this section of the code, the two functions that were prototyped
earlier are expanded upon.

Open the main.c file that is in the lab installer for Lab 7. When this is compared to the code in attachment 1,
it is clear to see that the code for the LED waterfall is missing. The task of this tutorial is to type on this
code. When done, debug/compile and download. Run the program and make sure the LEDs flow
appropriately.

As a challenge exercise, reduce the time to flow the lights from one end to the other or light up the Stellaris
board with different color LEDs when extremes are hit.

The start of the main function outlines how to setup a peripheral to be used. The I2C controller is housed
within a GPIO port. Thus setting up the Chip to use this peripheral is a three-step process.

1. Setup the core to enable the I2C hardware. This is part of the SysCtl set of functions outline in the
Driver users guide. The Driver users guide provides an outline of all the available functions found in
the Stellaris API

2. Setup the GPIO port to use the I2C controller. This is part of the GPIO set of functions found within
the Driver users guide.

3. Finally, Setup the I2C controller with the settings for the bus you are plugging it into. Like the

UART, I2C has many settings and options. This is part of the I2C set of functions found within the
Driver users guide.

7

Attachment 1: main.c file

/***

Project : Orbit Lab 7 ATE (ACCEL)
Version : 1.0
Date : 2/20/2013
Author :BrianZufelt / CraigKief
Company : COSMIAC/UNM
Comments:
This source provides an introduction to the sensing capabilities
for embedded systems. The student will read accelerometer data
and toggle the proper LED for the application selected.

**
Chip type : ARM LM44F120H5QR
Program type : Firmware
Core Clock frequency : 80.000000 MHz
***/

#define ACCEL_W 0x3A
#define ACCEL_R 0x3B
#define ACCEL_ADDR 0x1D

// Define needed for pin_map.h
#define PART_LM4F120H5QR

#include"inc/hw_memmap.h"
#include"inc/hw_types.h"
#include"inc/hw_i2c.h"
#include"driverlib/gpio.h"
#include"driverlib/pin_map.h"
#include"driverlib/sysctl.h"
#include"driverlib/i2c.h"

voidAccel_int(); // Function to initialize the Accelerometer

signedintAccel_read();// Function to read the Accelerometer

voidmain(void) {

 signedshortintLED_value = 1;

 SysCtlClockSet(SYSCTL_SYSDIV_1 | SYSCTL_USE_OSC | SYSCTL_OSC_MAIN | SYSCTL_XTAL_16MHZ); //setup clock

 SysCtlPeripheralEnable(SYSCTL_PERIPH_I2C0); // Enable I2C hardware
 SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOB); // Enable Pin hardware

 GPIOPinConfigure(GPIO_PB3_I2C0SDA); // Configure GPIO pin for I2C Data line
 GPIOPinConfigure(GPIO_PB2_I2C0SCL); // Configure GPIO Pin for I2C clock line

 GPIOPinTypeI2C(GPIO_PORTB_BASE, GPIO_PIN_2 | GPIO_PIN_3); // Set Pin Type

 // Enable Peripheral ports for output
 SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOC); //PORTC
 GPIOPinTypeGPIOOutput(GPIO_PORTC_BASE, GPIO_PIN_6|GPIO_PIN_7); // LED 1 LED 2

 GPIOPinTypeGPIOOutput(GPIO_PORTB_BASE, GPIO_PIN_5); // LED 4

 SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOD); //PORT D
 GPIOPinTypeGPIOOutput(GPIO_PORTD_BASE, GPIO_PIN_6); // LED 3

 //setup the I2C
 GPIOPadConfigSet(GPIO_PORTB_BASE, GPIO_PIN_2, GPIO_STRENGTH_2MA, GPIO_PIN_TYPE_STD); // SCL MUST BE STD
 GPIOPadConfigSet(GPIO_PORTB_BASE, GPIO_PIN_3, GPIO_STRENGTH_2MA, GPIO_PIN_TYPE_OD_WPU); // SDA IS OPEN DRAIN

8

 I2CMasterInitExpClk(I2C0_MASTER_BASE, SysCtlClockGet(), false); // The False sets the controller to 100kHz communication
 Accel_int(); // Function to initialize the Accelerometer

 while(1){

 // Fill in this section to read data from the Accelerometer and move the LEDs according to the X axis

 LED_value = LED_value + Accel_read(); //Accel_read only returns 1,0 or -1
 //if decrementing, going to the right on leds

 if(LED_value<= 1){
 // Cycle through the LEDs on the Orbit board
 GPIOPinWrite(GPIO_PORTC_BASE, GPIO_PIN_6|GPIO_PIN_7, 0x40); // LED 1 on LED 2 Off
 GPIOPinWrite(GPIO_PORTD_BASE, GPIO_PIN_6, 0x00); // LED 3 off, Note different PORT
 GPIOPinWrite(GPIO_PORTB_BASE, GPIO_PIN_5, 0x00); // LED 4 off
 LED_value = 1; // reset value to maintain range
 }

 elseif(LED_value == 2){
 // Cycle through the LEDs on the Orbit board
 GPIOPinWrite(GPIO_PORTC_BASE, GPIO_PIN_6|GPIO_PIN_7, 0x80); // LED 1 off LED 2 on
 GPIOPinWrite(GPIO_PORTD_BASE, GPIO_PIN_6, 0x00); // LED 3 off, Note different PORT
 GPIOPinWrite(GPIO_PORTB_BASE, GPIO_PIN_5, 0x00); // LED 4 on
 }
 elseif(LED_value == 3){
 // Cycle through the LEDs on the Orbit board
 GPIOPinWrite(GPIO_PORTC_BASE, GPIO_PIN_6|GPIO_PIN_7, 0x00); // LED 1 off LED 2 off
 GPIOPinWrite(GPIO_PORTD_BASE, GPIO_PIN_6, 0x40); // LED 3 on, Note different PORT
 GPIOPinWrite(GPIO_PORTB_BASE, GPIO_PIN_5, 0x00); // LED 4 0ff
 }
 elseif(LED_value>= 4){
 // Cycle through the LEDs on the Orbit board
 GPIOPinWrite(GPIO_PORTC_BASE, GPIO_PIN_6|GPIO_PIN_7, 0x00); // LED 1 off LED 2 Off
 GPIOPinWrite(GPIO_PORTD_BASE, GPIO_PIN_6, 0x00); // LED 3 off, Note different PORT
 GPIOPinWrite(GPIO_PORTB_BASE, GPIO_PIN_5, 0x20); // LED 4 on
 LED_value = 4; // reset value to maintain range
 }

 }
}

voidAccel_int(){ // Function to initialize the Accelerometer

 I2CMasterSlaveAddrSet(I2C0_MASTER_BASE, ACCEL_ADDR, false); // false means transmit
 I2CMasterControl(I2C0_MASTER_BASE, I2C_MASTER_CMD_BURST_SEND_START); // Send Start condition
 I2CMasterDataPut(I2C0_MASTER_BASE, 0x2D); // Writing to the Accel control reg
 SysCtlDelay(20000); // Delay for first transmission
 I2CMasterDataPut(I2C0_MASTER_BASE, 0x08); // Send Value to control Register
 I2CMasterControl(I2C0_MASTER_BASE, I2C_MASTER_CMD_BURST_SEND_FINISH); // Send Stop condition
 while(I2CMasterBusBusy(I2C0_MASTER_BASE)){}; // Wait for I2C controller to finish operations

}

signedintAccel_read() {// Function to read the Accelerometer

 signedint data;
 signedshort value = 0; // value of x

 unsignedchar MSB;
 unsignedchar LSB;

 I2CMasterSlaveAddrSet(I2C0_MASTER_BASE, ACCEL_ADDR, false); // false means transmit

I2CMasterDataPut(I2C0_MASTER_BASE, 0x32);
 SysCtlDelay(20000);
 I2CMasterControl(I2C0_MASTER_BASE, I2C_MASTER_CMD_SINGLE_SEND); //Request LSB of X Axis
 SysCtlDelay(2000000); // Delay for first transmission

I2CMasterSlaveAddrSet(I2C0_MASTER_BASE, ACCEL_ADDR, true); // false means transmit

9

 I2CMasterControl(I2C0_MASTER_BASE, I2C_MASTER_CMD_SINGLE_RECEIVE); //Request LSB of X Axis, read from the bus
 SysCtlDelay(20000);

 LSB = I2CMasterDataGet(I2C0_MASTER_BASE);
 SysCtlDelay(20000);

 I2CMasterSlaveAddrSet(I2C0_MASTER_BASE, ACCEL_ADDR, false); // false means transmit
 I2CMasterDataPut(I2C0_MASTER_BASE, 0x33);

 I2CMasterControl(I2C0_MASTER_BASE, I2C_MASTER_CMD_SINGLE_SEND); //Request LSB of X Axis
 SysCtlDelay(2000000); // Delay for first transmission

 I2CMasterSlaveAddrSet(I2C0_MASTER_BASE, ACCEL_ADDR, true); // false means transmit

 I2CMasterControl(I2C0_MASTER_BASE, I2C_MASTER_CMD_SINGLE_RECEIVE); //Request LSB of X Axis
 SysCtlDelay(20000);

 MSB = I2CMasterDataGet(I2C0_MASTER_BASE);

 value = (MSB << 8 | LSB); //bit shift 8 bits and or with LSB. Value is 16 bits.

 if(value < -250){ // testing axis for value
 data = -1;
 }
 elseif (value > 250){
 data = 1;
 }

 else{
 data = 0;
 }

 SysCtlDelay(20000);

 return data; // return value
}

10

Attachment 2: Block Diagram of the Pins Used in Projects

